Экологический портал

Главная страница экологического портала Правила карта сайта Обратная связь
Навигация по сайту
Это интересно!
Присоединяйся!
Наш опрос
Как вы связаны экологией ?
Работаю экологом.
Учусь в институте на эколога.
Изучаю экологию в школе.
Участвую в олимпиаде по экологии.
Просто увлекаюсь экологией.
Никак не связан с экологией.

Сейчас на сайте
Сейчас на сайте:
Пользователей: 0
Отсутствуют.
Роботов: 1
Yandex
Гостей: 13
Всех: 14
Именниников сегодня нет

Сцепление и кросинговер

 Экология человека, Экологические статьи  11-06-2009, 09:37  Author: iDix009

Сцепление и кросинговер

Рассматривая 2-й закон наследственности, мы видели, что перераспреде-ление генов имеет независимый характер и связано с прохождением отцовского и материнского членов каждой пары хромосом при мейозе в разные гаметы. Следовательно, в независимое перераспределение или рекомбинацию генов во-влекаются те наборы генов, которые располагаются на разных хромосомах. Та-кую рекомбинацию называют свободной рекомбинацией. Однако еще в 1910 г. Т. Морган установил, что гены, располагающиеся на одной хромосоме, сцепле-ны между собой, причем степень сцепления генов зависит от расстояния между ними. Следовательно, Т. Морган установил, что 2-му закону наследственности подчиняются лишь гены, локализованные на разных хромосомах. Однако зна-чение этих наблюдений заключалось также и в том, что они послужили основой для формулирования в дальнейшем Т. Морганом и его сотрудниками представ-лений о линейном расположении генов на хромосомах. На основе этих пред-ставлений стали создавать генетические карты хромосом не только дрозофилы, но и других организмов.
Сцепление генов хорошо изучено в случаях многих видов животных и растений, показано, что оно присуще как женским, так и мужским особям. Что-бы лучше понять природу сцепления, рассмотрим его на описанном шведским генетиком Хатчисоном примере сцепления генов, детерминирующего форму и окраску семян кукурузы.
Обозначим символом С доминантный аллель, детерминирующий окраску семян, символом с — рецессивный аллель, детерминирующий отсутствие окра-ски семян, символом S — доминантный аллель, детерминирующий нормаль-ную форму семян и символом s — рецессивный аллель, детерминирующий морщинистость семян (рис. 131). Если скрещивать растения CS/CS и cs/cs, то гибриды F,, обладая генотипом CS/cs, будут давать окрашенные семена нор-мальной формы. В соответствии со вторым законом наследственности при не-зависимом перераспределении генов С и S гибриды F1 должны были продуци-ровать гаметы CS, Cs, cS и cs, причем в равных количествах, оплодотворение которых гаметами организмов cess (скрещивание гибридов F1 с исходным ро-дителем cess) должно было дать потомство четырех фенотипических типов в отношении 1:1:1:1. Между тем скрещивание гибридов F1 с исходными роди-тельскими организмами cess приводило к получению организмов в совершенно иных количественных отношениях, а именно:
— растения CS/cs (окрашенные семена нормальной формы) — 4032,
— растения Cs/Cs (окрашенные сморщенные семена) — 149,
— растения cS/cs (бесцветные семена нормальной формы) — 152 и
— растения cs/cs (бесцветные сморщенные семена) — 4035. Легко ви-деть, что среди 8368 растений превалировали организмы, дающие окрашенные нормальные по форме и бесцветные сморщенные семена (4032 + 4035 = 8067, или 96,4%), т. е. характеризующиеся комбинациями родительских признаков. Что касается остальной части растений (149 + 152 == 301, или 3,6% от 8368), которые давали окрашенные сморщенные и бесцветные нормальной формы се-мена, то они обладали рекомбинантными признаками. Если бы растения этих четырех типов встречались в равных количествах, то это означало бы незави-симое перераспределение (рекомбинацию) генных пар С-с и S-s. Между тем полученные результаты свидетельствовали о том, что перераспределение этих генных пар является зависимым, ибо комбинации родительских генов встреча-ются чаще, чем в 50% случаев. Другими словами, последние сцеплены между собой в 96,4% случаев.
То, что данные две пары генов имеют зависимое распределение, нашло также подтверждение в экспериментах по скрещиванию кукурузы, одни из ко-торых дают бесцветные нормальной формы семена, а другие — окрашенные сморщенные семена. Следовательно, любые родительские комбинации двух пар генов, локализованных на одной и той же хромосоме, благодаря сцеплению оказываются вместе в одинаковом количестве гамет, продуцируемых гетерози-готами.
Рассмотренный пример сцепления двух генов является самым простым. Между тем можно предположить далее, что если ген А сцеплен с генами В и С, тогда последние также сцеплены между собой. Изучение сцепления генов у многих организмов путем скрещивания и определения независимого или зави-симого (сцепленного) характера в распределении их генов позволило устано-вить, что сцепление встречается между многими генами, а сцепленные гены со-ставляют группы сцепления. Следовательно, геномы состоят из групп сцеплен-ных генов или просто групп сцепления, причем количество групп сцепления обычно соответствует количеству хромосомных пар. У дрозофилы, имеющей 4 пары хромосом, установлено 4 группы сцепления, у кукурузы — 10 хромосом-ных пар и 10 групп сцепления, у садового гороха — 7 пар хромосом и 7 групп сцепления.
В случае животных, у которых пол детерминируется генетически, следует рас-сматривать гены, расположенные на Х- и Y-xpo-мосомах, в качестве самостоя-тельных групп сцепления.
Как мы уже отмечали, в соответствии с заключением Т. Моргана гены сцепле-ны тогда, когда локализованы на одной хромосомной паре. Допуская, что хро-мосомы остаются интактными при вступлении их в гаметы, локализованные на них гены всегда наследуются вместе. В этом случае можно говорить об их пол-ном сцеплении. Однако, рассматривая сцепление генов у кукурузы, мы видели, что полного сцепления генов не бывает, поскольку происходит формирование гамет не только двух родительских типов, но и гамет рекомбинантных типов (вследствие рекомбинации генов). Об отсутствии полного сцепления свиде-тельствуют также данные, полученные при изучении других организмов, меха-низм этого явления заключается в том, что в процессе гаметогенеза хромосомы клеток могут подвергаться разрывам в одном или нескольких местах, а сегмен-ты, образующиеся в результате разрыва одной хромосомы, могут смыкаться с сегментами гомологичной хромосомы при условии, что в последней тоже были разрывы, причем в аналогичных местах. Как мы видели, гены С и S у кукурузы в 97% случаев (гамет) остаются сцепленными в родительских комбинациях и примерно в 3% случаев (гамет) они не связаны между собой и находятся в ре-комбинантных сочетаниях. Обмен между хромосомными сегментами гомоло-гичных хромосом, сопровождаемый рекомбинацией сцепленных генов, полу-чил название кроссинговера (Т. Морган), а явление, обусловленное этим меха-низмом, называют генетической рекомбинацией. В результате рекомбинации из двух исходных комбинаций генов создается новая комбинация. Возвращаясь к случаю рекомбинации генов у кукурузы, можно сказать, что кроссинговер про-изошел в сегменте хромосомы между локуса-ми (местами), занимаемыми гена-ми С и S, вследствие двух разрывов в этих участках хромосомы у отдельных клеток.
Кроссинговер начинается с того, что гомологичные хромосомы спариваются. После этого каждый гомолог спаренных хрмосом расщепляется на две хроматиды, удерживаемые центромерой, причем между двумя хроматидами из четырех устанавливаются так называемые хиазмы (Х-образные фигуры или перекресты). В дальней шем в этих двух хроматидах происходят разрывы, за которыми наступает воссоединение концов разорванных хроматид. Благодаря разрыву и воссоединению сегментов происходит формирование новых хро-матид (рис. 132). Важно подчеркнуть, что хиазмы обусловливают перекресты лишь двух хроматид из четырех, не нарушая при этом структуры остальных двух хроматид, вследствие чего кроссинговер захватывает только две хроматиды. Благодаря этому сформированные в процессе мейоза хромосомы несут гены, располагавшиеся до мейоза на разных членах пар гомологичных хромосом. Классическая методика измерения сцепления заключается в скрещивании организмов, различающихся между собой по двум и более сцепленным генам, в получении гетерозиготных по этим генам гибридов F1 (например, АВ/ав или Ав/аВ), в обратных скрещиваниях гибридов F1 с гомозиготными по этим генам организмами (ав/ав) и в учете особенностей потомства, полученного после обратных скрещиваний. Установив количество особей с родительскими комбинациями генов и особей с рекомбинациями генов, определяют частоту рекомбинаций (в процентах к общему количеству организмов, полученных после обратных скрещиваний). Другие методы измерения сцепления основаны на результатах гибридизации соматических клеток или результатах клонирова-ния генов.
На степень сцепления генов влияют различные факторы. Известно, что частота кроссинговера снижается с возрастом организмов, под воздействием ионизи-рующей радиации и других сильнодействующих факторов.
Кроссинговер, как уже отмечено, имеет место лишь в процессе гаметогенеза при мейозе. Однако он может происходить и в соматических клетках. Сомати-ческий кроссинговер установлен у растений и животных многих видов. У орга-низмов, размножающихся только половым путем, результаты соматического кроссинговера не наследуются.



загрузка...

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.